Two new election audit tools: sampling with k-cut, and Bayesian audits

Ronald L. Rivest

Election Audit Summit December 7, 2018

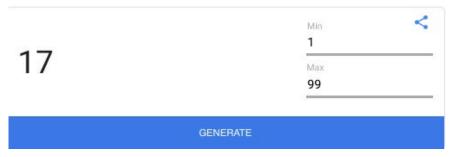
Audits are about:

- Sampling cast paper ballots at random
 Sampling with k-cut
- Figuring out what the sampled ballots tell you about the reported election results

– Bayesian audits

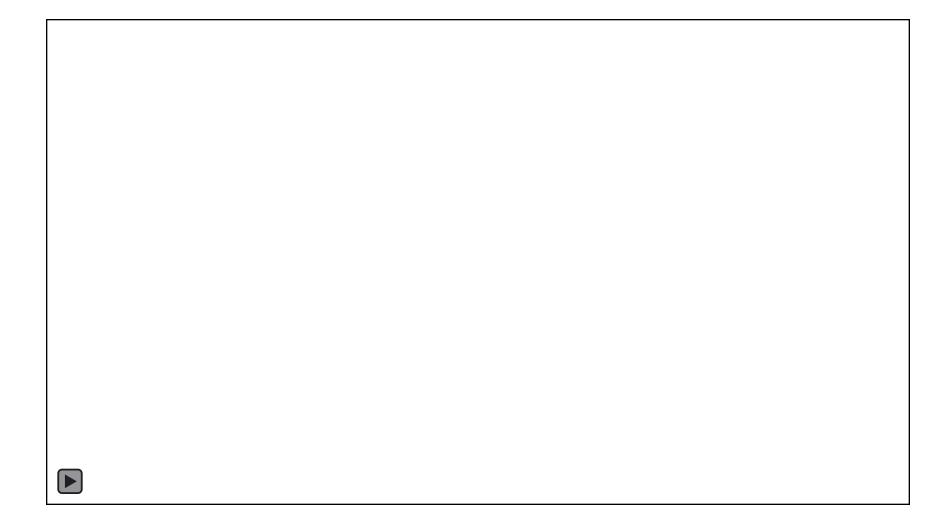
Sampling with k-cut

Finding a random ballot


- **Counting** is standard method: count down to desired ballot
- *k*-cut is new method:
 - Perform k = 6 "cuts"
 - (each moving some top portion to bottom)
 - (By Mayuri Sridhar & me)

Counting

• Please count to ballot 572 out of these 901 !


k-cut

• Get random number hint H between 1 and 99 (google "random number generator" for app)

- Cut (take) approximately H % of ballots off top and move to bottom. OK to "eye-ball" it.
- Repeat above k = 6 times.
- Take top ballot as randomly selected ballot.

k-cut video

Remarks on k-cut

- Can be about 5X faster (depending...)
- May want to decrease risk limit a tad to account for residual non-uniformity of sampling
- *k-cut* does not work for *ballot-comparison audits* where you are looking for ballot with specific ID.
- For details, see: <u>https://arxiv.org/abs/1811.08811</u>

Bayesian audits

Audit Rochester Hills MI

• Reported results for Proposition:

22,999 **Yes** 12,343 **No** 1,324 **Other**

 Sample results for Proposition: 50 Yes 26 No

0 Other

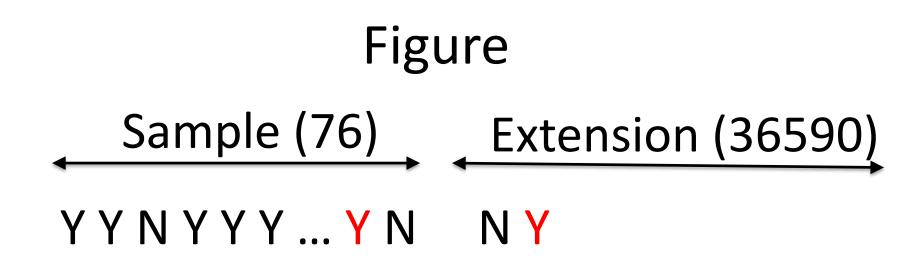
• So... ???

Compare RLA with Bayesian

• **RLA Question**:

What is current ``risk''? (Probability that if reported winner is incorrect, audit would nonetheless accept it if audit stopped now.)

• Bayesian Question:


What is probability that reported winner would lose if all ballots were examined? ("upset probability")

Bayesian Method (ballot polling)

- 1. Start by drawing sample of paper ballots from population of cast paper ballots.
- Extend for remaining ballots, but simulating what you might see: replace each draw of a paper ballot with copy of random earlier ballot.
- 3. Find winner for all (drawn and simulated) ballots.
- 4. Repeat steps 2—3 many times, measuring fraction of time reported winner loses.
- 5. Repeat with larger sample if fraction > 5%.

Figure Sample (76) Extension (36590) YYNYYY...YN

Figure Sample (76) Extension (36590) YYNYYY...YN N

Figure Sample (76) Extension (36590) YYNYYY...YN NYN

Figure Sample (76) Extension (36590) YYNYY...YN NYN.....NY

Results

• RLA results:

Risk measured at 2.1 %

(Kellie Ottoboni using SUITE tool)

• Bayesian results:

99.7 % of time **Yes** wins 0.3 % of time **No** wins

(Mayuri Sridhar using BPTOOL)

• Both methods confirm reported outcome.

Remarks

- Bayesian methods extend to:
 - Ballot-comparison audits
 - Hybrid audits (CVR and no-CVR strata)
 - IRV (RCV) or other complex voting schemes (since method uses social choice function as a "black box" at the end of each simulation trial)
- For more details see

https://arxiv.org/abs/1801.00528

The End

Thanks for your attention!

(and thanks to NSF CSOI and to Verified Voting!)